今日电催化顶刊文献(本内容由AI生成,请仔细甄别)

本页更新时间:2025-06-29 05:01:04

[1] YES AM

Fast‐Charging MXene/TiN‐Confined In2Se3 Anode with Dual Hydrogen‐Bonding Synergy for High‐Capacity Ammonium‐Ion Storage

https://advanced.onlinelibrary.wiley.com/doi/10.1002/adma.202509246?af=R

 

[2] YES AM

Metal Single‐Atom Materials: Unlocking the Future of Sustainable Energy and Environment in Automobiles

https://advanced.onlinelibrary.wiley.com/doi/10.1002/adma.202507831?af=R

 

[3] YES AM

Single‐Atom Ru Anchored Mesoporous TiO2 Phase‐Junction Promotes Photocatalytic Biomass Conversion

https://advanced.onlinelibrary.wiley.com/doi/10.1002/adma.202510246?af=R

 

[4] YES ANGEW

From Corrosion to Creation: Interfacial De‐electronation Drives Hydrogenation‐Energy Symbiosis

https://onlinelibrary.wiley.com/doi/10.1002/anie.202507722?af=R

 

[5] YES ANGEW

Ultrathin PtSe2 Nanowires in Single‐Walled Carbon Nanotubes for Hydrogen Evolution Reaction

https://onlinelibrary.wiley.com/doi/10.1002/anie.202510463?af=R

 

[6] YES JACS

Imaging and Tailoring Chemical Evolution Kinetics of (0001) Facet on Single β-Co(OH)2 Nanoplates for the Electrocatalytic Oxygen Evolution Reaction

http://dx.doi.org/10.1021/jacs.5c04465

 

[7] YES JACS

Nature of the Active Sites and Reaction Mechanism during Methanol Steam Reforming over Cu/ZnO: An Isotopic Modulated Excitation Diffuse Reflectance Infrared Fourier Transform Spectroscopy Study

http://dx.doi.org/10.1021/jacs.5c07628

 

[8] YES JACS

Nitrogen-Rich Porous-Conjugated Framework for Efficient Capture and Electroreduction of Simulated Flue Gas in Acidic Electrolyte

http://dx.doi.org/10.1021/jacs.5c07519

 

[9] YES JACS

Phosphorus-Driven Dual d-Band Harmonization for Reversible Electrocatalysis

http://dx.doi.org/10.1021/jacs.5c03061

 

[10] YES JACS

Self-Protection Mechanism and Mass Transport Governing O2 Tolerance in an Iron Porphyrin Homogeneous Catalyst for CO2 Electroreduction

http://dx.doi.org/10.1021/jacs.5c09840

 

[11] YES Matter

Regular mesoporous nanosheets with mesoscopic high surface pore curvature and accelerated ion-transport channels

https://www.sciencedirect.com/science/article/pii/S2590238525003273?dgcid=rss_sd_all

 

[12] NO AM

1.4% External Quantum Efficiency 988 nm Light Emitting Diode Based on Tin‐Lead Halide Perovskite

https://advanced.onlinelibrary.wiley.com/doi/10.1002/adma.202415958?af=R

 

[13] NO AM

Advances and Challenges in Large‐Area Perovskite Light‐Emitting Diodes

https://advanced.onlinelibrary.wiley.com/doi/10.1002/adma.202410154?af=R

 

[14] NO AM

Advances in Spectro‐Microscopy Methods and their Applications in the Characterization of Perovskite Materials

https://advanced.onlinelibrary.wiley.com/doi/10.1002/adma.202411916?af=R

 

[15] NO AM

Advancing from MOFs and COFs to Functional Macroscopic Porous Constructs

https://advanced.onlinelibrary.wiley.com/doi/10.1002/adma.202411617?af=R

 

[16] NO AM

Bioinspired Turing‐Nanoarchitected Needle for Solid Matrices Analysis: A Universal Platform Enabling Dual‐Scale SERS Enhancement

https://advanced.onlinelibrary.wiley.com/doi/10.1002/adma.202506426?af=R

 

[17] NO AM

Blue Light‐Emitting Diodes Based on Pure Bromide Perovskites

https://advanced.onlinelibrary.wiley.com/doi/10.1002/adma.202409867?af=R

 

[18] NO AM

Bright and Efficient CsSnBr3 Light‐Emitting Diodes Enabled by Interfacial Reaction‐Assisted Crystallization

https://advanced.onlinelibrary.wiley.com/doi/10.1002/adma.202414841?af=R

 

[19] NO AM

Clinically Accurate Diagnosis of Alzheimer's Disease via Single‐Molecule Bioelectronic Label‐Free Profiling of Multiple Blood Extracellular Vesicle Biomarkers

https://advanced.onlinelibrary.wiley.com/doi/10.1002/adma.202505262?af=R

 

[20] NO AM

Correction to “Aerosol‐Synthesized Surfactant‐Free Single‐Walled Carbon Nanotube‐Based NO2 Sensors: Unprecedentedly High Sensitivity and Fast Recovery”

https://advanced.onlinelibrary.wiley.com/doi/10.1002/adma.202414533?af=R

 

[21] NO AM

Crosslinkable Ligands for High‐Density Photo‐Patterning of Perovskite Nanocrystals

https://advanced.onlinelibrary.wiley.com/doi/10.1002/adma.202409564?af=R

 

[22] NO AM

Designing Maximal Strength in Nanolamellar Eutectic High‐Entropy Alloys

https://advanced.onlinelibrary.wiley.com/doi/10.1002/adma.202500149?af=R

 

[23] NO AM

Designing Robust Quasi‐2D Perovskites Thin Films for Stable Light‐Emitting Applications

https://advanced.onlinelibrary.wiley.com/doi/10.1002/adma.202413412?af=R

 

[24] NO AM

Detachable and Reusable: Reinforced π‐Ion Film for Modular Synaptic Reservoir Computing

https://advanced.onlinelibrary.wiley.com/doi/10.1002/adma.202506729?af=R

 

[25] NO AM

Exciton Dynamics in Layered Halide Perovskite Light‐Emitting Diodes

https://advanced.onlinelibrary.wiley.com/doi/10.1002/adma.202411998?af=R

 

[26] NO AM

Exciton Transport in Perovskite Materials

https://advanced.onlinelibrary.wiley.com/doi/10.1002/adma.202415757?af=R

 

[27] NO AM

In Situ Fabricated Perovskite Quantum Dots: From Materials to Applications

https://advanced.onlinelibrary.wiley.com/doi/10.1002/adma.202412276?af=R

 

[28] NO AM

Issue Information

https://advanced.onlinelibrary.wiley.com/doi/10.1002/adma.202570171?af=R

 

[29] NO AM

Lead‐Free Perovskite Light‐Emitting Diodes

https://advanced.onlinelibrary.wiley.com/doi/10.1002/adma.202411020?af=R

 

[30] NO AM

Lesional Macrophage‐Targeted Nanomedicine Regulating Cholesterol Homeostasis for the Treatment of Atherosclerosis

https://advanced.onlinelibrary.wiley.com/doi/10.1002/adma.202502581?af=R

 

[31] NO AM

Light‐Emitting Diodes Based on Metal Halide Perovskite and Perovskite Related Nanocrystals (Adv. Mater. 25/2025)

https://advanced.onlinelibrary.wiley.com/doi/10.1002/adma.202570172?af=R

 

[32] NO AM

Light‐Emitting Diodes Based on Metal Halide Perovskite and Perovskite Related Nanocrystals

https://advanced.onlinelibrary.wiley.com/doi/10.1002/adma.202415606?af=R

 

[33] NO AM

Managing Edge States in Reduced‐Dimensional Perovskites for Highly Efficient Deep‐Blue LEDs

https://advanced.onlinelibrary.wiley.com/doi/10.1002/adma.202412041?af=R

 

[34] NO AM

Manipulating Electron‐Phonon Coupling for Efficient Tin Halide Perovskite Blue LEDs

https://advanced.onlinelibrary.wiley.com/doi/10.1002/adma.202413895?af=R

 

[35] NO AM

Metal Halide Perovskite LEDs for Visible Light Communication and Lasing Applications

https://advanced.onlinelibrary.wiley.com/doi/10.1002/adma.202414745?af=R

 

[36] NO AM

Modulation of Charge Transport Layer for Perovskite Light‐Emitting Diodes

https://advanced.onlinelibrary.wiley.com/doi/10.1002/adma.202410535?af=R

 

[37] NO AM

Nanocrystalline Perovskites for Bright and Efficient Light‐Emitting Diodes

https://advanced.onlinelibrary.wiley.com/doi/10.1002/adma.202415648?af=R

 

[38] NO AM

Optimizing Perovskite Surfaces to Enhance Post‐Treatment for Efficient Blue Mixed‐Halide Perovskite Light‐emitting Diodes

https://advanced.onlinelibrary.wiley.com/doi/10.1002/adma.202414788?af=R

 

[39] NO AM

Over a Decade of Progress in Metal‐Halide Perovskite Light‐Emitting Diodes

https://advanced.onlinelibrary.wiley.com/doi/10.1002/adma.202508542?af=R

 

[40] NO AM

Performance‐Recoverable Closed‐Loop Neuroprosthetic System

https://advanced.onlinelibrary.wiley.com/doi/10.1002/adma.202503413?af=R

 

[41] NO AM

Reduced‐Dimensional Perovskites: Quantum Well Thickness Distribution and Optoelectronic Properties

https://advanced.onlinelibrary.wiley.com/doi/10.1002/adma.202410633?af=R

 

[42] NO AM

Solution Processed Bilayer Metal Halide White Light Emitting Diodes

https://advanced.onlinelibrary.wiley.com/doi/10.1002/adma.202412239?af=R

 

[43] NO AM

Spin‐Orbital Ordering Effects of Light Emission in Organic–Inorganic Hybrid Metal Halide Perovskites

https://advanced.onlinelibrary.wiley.com/doi/10.1002/adma.202411913?af=R

 

[44] NO AM

Strategies for Controlling Emission Anisotropy in Lead Halide Perovskite Emitters for LED Outcoupling Enhancement

https://advanced.onlinelibrary.wiley.com/doi/10.1002/adma.202413622?af=R

 

[45] NO AM

Sword and Board in One: A Bioinspired Nanocomposite Membrane for Guided Bone Regeneration

https://advanced.onlinelibrary.wiley.com/doi/10.1002/adma.202504577?af=R

 

[46] NO AM

Symmetry Basis Engineered Covalent Organic Frameworks for Water Purification Under Ultralow Light Intensity

https://advanced.onlinelibrary.wiley.com/doi/10.1002/adma.202505164?af=R

 

[47] NO AM

Synergistic Hybrid‐Ligand Passivation of Perovskite Quantum Dots: Suppressing Reduced‐Dimensionality and Enhancing Optoelectronic Performance (Adv. Mater. 25/2025)

https://advanced.onlinelibrary.wiley.com/doi/10.1002/adma.202570170?af=R

 

[48] NO AM

Synergistic Hybrid‐Ligand Passivation of Perovskite Quantum Dots: Suppressing Reduced‐Dimensionality and Enhancing Optoelectronic Performance

https://advanced.onlinelibrary.wiley.com/doi/10.1002/adma.202410128?af=R

 

[49] NO AM

Synthetic Control of Water‐Stable Hybrid Perovskitoid Semiconductors

https://advanced.onlinelibrary.wiley.com/doi/10.1002/adma.202406274?af=R

 

[50] NO AM

Ten Years of Perovskite Lasers

https://advanced.onlinelibrary.wiley.com/doi/10.1002/adma.202413559?af=R

 

[51] NO AM

The Photophysics of Perovskite Emitters: from Ensemble to Single Particle

https://advanced.onlinelibrary.wiley.com/doi/10.1002/adma.202413836?af=R

 

[52] NO AM

The Rise of Mechanobiology for Advanced Cell Engineering and Manufacturing

https://advanced.onlinelibrary.wiley.com/doi/10.1002/adma.202501640?af=R

 

[53] NO AM

Thin Film Stoichiometry and Defects Management for Low Threshold and Air Stable Near‐Infrared Perovskite Laser

https://advanced.onlinelibrary.wiley.com/doi/10.1002/adma.202407652?af=R

 

[54] NO AM

Tin‐Lead‐Selenide Nanocrystals for Sensitive Uncooled Mid‐Infrared Focal Plane Array Imager with Monolithic Readout Integration

https://advanced.onlinelibrary.wiley.com/doi/10.1002/adma.202504225?af=R

 

[55] NO AM

Ultrathin Polymer Electrolyte With Fast Ion Transport and Stable Interface for Practical Solid‐state Lithium Metal Batteries

https://advanced.onlinelibrary.wiley.com/doi/10.1002/adma.202510376?af=R

 

[56] NO ANGEW

A 'Cocktail' Fluorescent Probe for Multi‐ROS Imaging Unveils Ferroptosis‐Driven Liver Fibrosis Development

https://onlinelibrary.wiley.com/doi/10.1002/anie.202506728?af=R

 

[57] NO ANGEW

A 3.8V Quaternary Ammonium‐Based Dual‐Ion Battery Enabled by a Conjugated Ladder Polymer

https://onlinelibrary.wiley.com/doi/10.1002/anie.202511864?af=R

 

[58] NO ANGEW

A Bioinspired Diazafluorenone Catalytic System for Aerobic Oxidative Deamination of Primary Amines

https://onlinelibrary.wiley.com/doi/10.1002/anie.202511937?af=R

 

[59] NO ANGEW

A Macrocycle‐Based Supramolecular Strategy for Interchangeable Screwdriver‐Like On‐Demand Post‐Functionalization of Covalent Organic Framework

https://onlinelibrary.wiley.com/doi/10.1002/anie.202510534?af=R

 

[60] NO ANGEW

A Multivalent Targeting Strategy for Developing Reactive Oxygen Species‐Activated Tumor‐Seeking Probe to Guide Precise Surgical Resection

https://onlinelibrary.wiley.com/doi/10.1002/anie.202510441?af=R

 

[61] NO ANGEW

Chirality Unbound in Graphene Nanoribbons

https://onlinelibrary.wiley.com/doi/10.1002/anie.202508426?af=R

 

[62] NO ANGEW

New Single‐Molecule Junction Based on Covalent Organic Cage

https://onlinelibrary.wiley.com/doi/10.1002/anie.202507894?af=R

 

[63] NO ANGEW

Nickel‐Catalyzed Sila‐Cycloaddition of Dichlorodisilanes: Selective Si–Cl Activation for Cyclic Disilanes and Enantioenriched Synthesis

https://onlinelibrary.wiley.com/doi/10.1002/anie.202509961?af=R

 

[64] NO ANGEW

Selection of Ribofuranose‐Isomer Among Pentoses by Phosphorylation with Diamidophosphate

https://onlinelibrary.wiley.com/doi/10.1002/anie.202509810?af=R

 

[65] NO ANGEW

Solid‐state NMR Reveals Reorganization of the Aspergillus fumigatus Cell Wall Due to a Host‐Defence Peptide

https://onlinelibrary.wiley.com/doi/10.1002/anie.202509012?af=R

 

[66] NO ANGEW

Stable Acrylamide‐Linked Covalent Organic Frameworks via Mannich Polymerization for Efficient Gold Recovery from Complex E‐waste Leachates

https://onlinelibrary.wiley.com/doi/10.1002/anie.202511163?af=R

 

[67] NO ANGEW

Structural Differentiation of Homologous Anisodimensional Frameworks Driven by Site‐Selective Polymerization

https://onlinelibrary.wiley.com/doi/10.1002/anie.202509415?af=R

 

[68] NO ANGEW

Sustainable Closed‐loop Recycling of Polyester Waste using Reconstructed Defective‐Metal‐Organic Frameworks

https://onlinelibrary.wiley.com/doi/10.1002/anie.202504743?af=R

 

[69] NO ANGEW

Synthesis of a Library of N‐monofluoromethyl Compounds from N‐monofluoromethyl Carbamoyl/Thiocarbamoyl Fluorides

https://onlinelibrary.wiley.com/doi/10.1002/anie.202508594?af=R

 

[70] NO ANGEW

Unveiling the Influence of Cyanogen Vacancies in Prussian Blue for Sodium‐ion Batteries

https://onlinelibrary.wiley.com/doi/10.1002/anie.202421916?af=R

 

[71] NO ANGEW

Unveiling the Power of Dark State Photocages: An Efficient Pathway to Triplet State under Near‐Infrared Light Irradiation

https://onlinelibrary.wiley.com/doi/10.1002/anie.202504670?af=R

 

[72] NO ANGEW

­­­Photosensitizer Repositioning Affords an Enantiocomplementary Enzyme for [2+2]‐Cycloadditions

https://onlinelibrary.wiley.com/doi/10.1002/anie.202503576?af=R

 

[73] NO Chem

Dynamic mechanoresponsive polymers enabled by ring-opening polymerization of cyclic propargyl carbonates

https://www.sciencedirect.com/science/article/pii/S2451929425002335?dgcid=rss_sd_all

 

[74] NO Chemical Reviews

From Layered Crystals to Permselective Membranes: History, Fundamentals, and Opportunities

http://dx.doi.org/10.1021/acs.chemrev.5c00025

 

[75] NO JACS

2D Covalent Organic Frameworks with cpt-defect topology Enabled by a Node-Splitting Strategy

http://dx.doi.org/10.1021/jacs.5c08143

 

[76] NO JACS

Coprecipitated Enzyme-Encapsulated Covalent Organic Frameworks for Biocatalysis

http://dx.doi.org/10.1021/jacs.5c05496

 

[77] NO JACS

Electrons and Their Multiple Kinetic Fates in an Ionic Liquid

http://dx.doi.org/10.1021/jacs.5c07005

 

[78] NO JACS

Identifying Driving and Spectator Phonon Modes in Pentacene Exciton Transport

http://dx.doi.org/10.1021/jacs.5c05271

 

[79] NO JACS

π–π Stacking and Structural Configurations in Aromatic Thiophene and Fluorobenzene Dimers Revealed by Rotational Spectroscopy

http://dx.doi.org/10.1021/jacs.5c02401

 

[80] NO Joule

High-emissivity, thermally robust emitters for high power density thermophotovoltaics

https://www.sciencedirect.com/science/article/pii/S2542435125001862?dgcid=rss_sd_all